

Project no. FP6-028038

Palette

Pedagogically sustained Adaptive LEarning Through the exploitation of Tacit and

Explicit knowledge

Integrated Project

Technology-enhanced learning

Start date of project: 1 February 2006 Duration: 36 months

D.INF.01: Report on the design of extension mechanisms for creating templates, using

templates for editing and customizing the user interface, and of extensions to be

integrated in the information reuse tool (M3)

Due date of deliverable: April 30, 2006

Actual submission date: May 15, 2006

Organisation name of lead contractor for this deliverable: INRIA

 Final version

Project co-funded by the European Commission within the Sixth Framework Programme

(2002-2006)

Dissemination Level

R Public PU

Keywords: Information services, structured documents, document reuse, document editing, template

languages, document transformations, automatic transformations, multimedia, XML, SMIL, XHTML,

XML Schema, schema matching, structure matching.

Authors: A. Boukottaya (EPFL), F. Campoy Flores (INRIA), R. Deltour (INRIA), V. Quint (INRIA),

Ch. Vanoirbeek (EPFL), I. Vatton (INRIA), K. Zouba (EPFL)

Summary

In order to support the activities of participants in Communities of Practice, the Palette project will
provide tools for document production and for document reuse in heterogeneous applications. The
aim is to reduce the current limitations caused by the proliferation of data sources deploying a
variety of modalities, information models and encoding syntaxes. This will enhance applicability
and performances of document technologies within pedagogically consistent scenarios.

To achieve this goal, two directions are taken: 1) the adoption of well established standards and 2)
the development of tools specifically suited for use in CoPs.

The chosen standards for document formats are based on XML technologies. Documents using
discrete media such as text, pictures, graphics and mathematical expressions are represented in
XHTML, SVG and MathML, under the form of compound documents, while multimedia
documents involving continuous media such as video, sound and animations use the SMIL
language. A number of tools handle these formats, thus offering a wide range of applications to CoP
participants. Two kinds of tools are developed for two different tasks: document authoring and
document reuse.

The authoring tools are based on the principle of separating the authoring model from the
publication format. Most document editors exhibit a user interface that is mainly determined by the
features offered by the format. The approach developed here is different. It aims at allowing users to
create the authoring model that best fills the requirements of the specific documents they have to
produce, while generating documents in a standard format. This approach is applied to both discrete
and continuous media, through two different models introduced below.

For compound documents using discrete media, a generic structure description language was
designed. It allows the particular structure of a type of document to be described in terms of the
standard document format language(s). This language, called XTiger, is both simple and powerful.
It defines only the special parts of the document structure that makes the document type unique, and
it relies on the underlying languages (XHTML, SVG, MathML) for the less specific parts.

For multimedia documents published in SMIL, two steps are necessary. First an object model is
used to represent generic objects with all their facets, i.e. the logical, temporal and spatial
dimensions. Then, a template model describes how these objects have to be combined and
specialized to make a particular type of multimedia document.

The document reuse tool is based on structure transformations. To allow a document produced in a
given XML language to be handled by an application accepting a different XML language, a
structure transformation has to be performed. This is usually done by describing the transformation
in the XSLT language. The reuse tool aims at assisting the user in generating this transformation. It
first compares the schemas of the source and result structures and, based on the matching of one
structure onto the other, it generates the XSLT transformation.

The implementation of these techniques will be done in three different tools, each based on software
that is already available. The XTiger language will constitute an extension of the Amaya editor. The
multimedia authoring model will be implemented in the next version of the LimSee editor. The
document reuse tool will be based on a previous prototype.

Contents

1. Introduction.. 1
2. Templates in Amaya .. 2

2.1. Amaya ... 2
2.2. Templates and Semantic XHTML .. 2
2.3. The XTiger language .. 3

2.3.1. Types.. 4
2.3.2. Structure description .. 5
2.3.3. Content and attributes .. 6
2.3.4. Other features... 8

2.4. Implementation issues... 8
2.4.1. Structure manipulation... 8
2.4.2. User interface issues .. 10

3. Authoring model for LimSee3 .. 10
3.1. From LimSee2 to LimSee3... 10
3.2. Document model... 11

3.2.1. Object approach ... 11
3.2.2. Objects hierarchy ... 12

3.2.2.1. Media assets and media objects .. 12
3.2.2.2. Rich objects... 13

3.2.3. Object-to-object relations... 14
3.2.4. Comments on the document model.. 14

3.3. The templates model ... 15
3.3.1. Template documents and template objects .. 15
3.3.2. Media zones ... 15
3.3.3. Repeatable structures ... 15
3.3.4. Instantiation of a template.. 17

3.4. Issues and future extensions.. 17
3.4.1. Locked parts... 17
3.4.2. Heterogeneous lists .. 17
3.4.3. Object types ... 17
3.4.4. High level concepts and syntax choices... 18

4. Document reuse tool .. 18
4.1. Automating structured document transformations.. 18

4.1.1. Related work .. 18
4.1.2. Shortcomings and requirements... 19

4.2. Current state of the information reuse tool ... 20
4.2.1. The conceptualization toolkit... 20

4.2.1.1. The schema graph generator ... 21
4.2.1.2. The schema graph visualizer... 21

4.2.2. The matcher engine.. 22
4.2.2.1. Terminological matching .. 22
4.2.2.2. Datatype compatibility.. 23
4.2.2.3. Designer type hierarchy .. 23
4.2.2.4. Structural matching... 23
4.2.2.5. Mapping discovery.. 24
4.2.2.6. Mapping structuring.. 24

4.2.3. XSLT generator ... 26

i

4.3. Extensions to the information reuse tool .. 27
4.3.1. Robustness issues... 27
4.3.2. Development of efficient user interface... 29
4.3.3. Web services matching .. 29

5. Conclusion .. 30
6. References... 31

ii

1. Introduction

WP2 of Palette is dedicated to Information Services. It aims at providing services for information
production and reuse. It focuses on structured multimedia documents and on tools for producing and
using this type of document. Authoring tools and information reuse tools are in the focus of this
WP.

For authoring tools, the objective is to provide users with a flexible, adaptable environment that
allows them to efficiently produce different types of multimedia documents, specifically targeted
for use in communities of practice. The authoring tools are based on existing software platforms
already available at INRIA, Amaya and LimSee2.

For structured documents reuse, the objective is to allow existing documents initially structured for
a given purpose to be repurposed for use in a different context. This will improve (re)usability of
information in communities of practice. The document reuse tool is based on a research prototype
recently developed at EPFL.

The first task of WP2 consists in preparing the development of these tools by defining the software
architecture, more specifically the extension of the architecture of the existing tools that will enable
the development of the new services. For the authoring tools, the main issue is to support a
mechanism that enables templates and high-level document models. For the information reuse tool,
two major issues have to be addressed: enhancing robustness and improving the user interface.

All the tools considered here are based on the structured document approach. With this approach, a
document is represented as a structure of abstract elements. The structure includes hierarchical
relationships and hypertext links. The elements assembled by the structure are typically titles,
paragraphs, sections, subsections, headings, figures, lists, references, tables, table rows, table cells,
etc. Different types of documents involve different elements, assembled in different ways. For this
reason, each document type can be specified by a generic structure (also called schema or document
type definition – DTD) which defines the available elements and the rules for making the structure.
Document instances follow the generic structure of their type.

This approach brings a number of advantages. Documents represented that way may be used in
many different types of applications. Multiple graphical representations may be produced by
applying different styles to the structure. Other documents may be automatically derived from an
original document by selecting some parts of the original structure and re-arranging them in a
different way. Information retrieval is facilitated by the explicit structure. By conveying a rich
representation of information, rigorously defined by a schema or a DTD, structured documents open
a broad scope of possible treatments.

The concepts of structured documents have been standardized in XML [Bray 04a] and a series of
associated technologies that are now widely accepted. These standards were developed initially for
the web by W3C, but their range of application is now much broader. The tools presented here are
based on these standards.

This report presents the achievements of the architecture task of WP1. As information services in
Palette are based on three different software platforms, the rest of this report is organized in three
part, one for each platform.

D.INF.01: Report on the design of extension mechanisms for creating templates, using templates for
editing and customizing the user interface, and of extensions to be integrated in the information

reuse tool (M3)

1

2. Templates in Amaya

2.1. Amaya

Amaya [Quint 05] is an authoring tool for the web. Its main role is to help authors to easily create,
edit and publish documents that comply with the standards of the web and exploit most of their
features. More precisely, it allows authors to interactively manipulate the structure of XHTML
documents [Altheim 01] through a formatted representation. It does so following the XHTML
DTD: all user actions are performed under the control of the DTD. As a consequence, documents
produced by Amaya are well-formed and valid (in the XML sense) and the user does not have to
worry about what is allowed where, or about the XML syntax.

Amaya can also edit documents encoded in other XML languages, in the same way as XHTML
pages, i.e. based on their DTD. It supports MathML [Carlisle 03] for mathematical expressions and
SVG [Ferraiolo 03] for animated 2D graphics. Formulas and graphics may be included in XHTML
documents and edited within these documents, thus allowing compound documents to be treated as
easily as XHTML pages.

In addition to these XML languages Amaya supports CSS [Lie 05], the style language for XHTML
and other XML documents. Users can create and modify CSS style sheets while they are editing
documents. They can thus develop style sheets step by step, while checking the impact of each
change.

For each XML language supported (XHTML, MathML, SVG), Amaya follows closely the
corresponding DTD. As a consequence, the dialogue between an author and the tool is based on the
structure and the elements defined by the DTDs. While this approach was proven very efficient for
many kinds of web pages, in a more specific context, such as a community of practice, one can go
further. Documents produced and exchanged in CoPs are often more structured than usual web
pages. A richer document model is needed to efficiently help authors. For this purpose, we propose
to include in Amaya the support for templates, based on the Semantic XHTML approach.

2.2. Templates and Semantic XHTML

Consider the structure of this report. First comes the front page which contains information about
the project (number, acronym, full name, type, etc.), the title of the report, two dates, a list of
keywords and the list of authors with their affiliation. The document body consists in an
introduction and a sequence of sections with nested subsections. It is followed by a list of
bibliographic entries, which themselves have a well defined structure. While some parts, such as the
front matter, have a very rigid structure, some other parts are not strongly constrained. A section for
instance must start with a heading, but it may contain paragraphs, bulleted lists, figures, examples,
tables, etc., and the author is free to choose the appropriate elements and to organize them in any
order.

The traditional approach for modelling such a document is to write an XML schema [Fallside 04] or
a DTD [Bray 04a], that describes exactly the intended structure of a Report. Then, an XML editor
has to be used for producing documents that are consistent with the model. Consistency (validity in
XML-speak) is checked with a validating parser when the document is complete. Before publication
or communication to others, documents have to be converted into (X)HTML, to make sure that
everyone can read and browse it with the most common tool, a web browser. This is usually

Palette FP6-028038

2

achieved by a transformation expressed in a language such as XSLT [Clark 99]. A specific
transformation sheet has then to be developed.

This process is long, complex and costly. In addition to the authors, it involves several actors with
various technical skills, in particular to create a schema and to implement the transformations from
the source language to the publication language. When only a limited number of documents are
expected to be created, the cost of this process is too high. Authors prefer to write directly
(X)HTML documents ready for publication. They simplify the whole process, but they loose the
advantages offered by XML. The issue is that XHTML does not seem to be rich enough to represent
all the details of the structure mentioned above.

Looking closer at this issue, it appears that XHTML can actually do the job, in particular by
exploiting the class attribute. This attribute gives a more precise type to elements that are
otherwise a bit vague, like div (division) and span. For instance, all the information about the
authors can be wrapped in a div with an attribute class="authors". In this div, the p (paragraph)
that contain information about an author can be assigned an attribute class="author". To refine
the structure further in this paragraph, the given name, the family name and the affiliation can be
separated in different span elements, each with a different class attribute, clearly identifying its
role in the structure.

This is the Semantic XHTML approach, also called microformat [Khare 06]. It consists in defining a
rich structure (a Report or the information about a person) in terms of another, less specialized
language (XHTML), by stating guidelines for using the lower level language. This approach has
many advantages:

• Documents can be structured with semantically rich markup.
• No transformation is needed for displaying a document with a simple web browser: the

document is encoded in plain XHTML, without any extension.
• The structure provides detailed information that can be exploited by CSS style sheets [Lie

05] to fine tune the style and the layout of documents.
• All the details of the structure are available when the document is exchanged. Any

application can extract and reuse information from these documents.

Semantic XHTML has a number of advantages, but also some limitations. First, more markup is
required than for dumb HTML. Producing it by hand is tedious and error-prone. Second, no formal
specifications define these formats, and this is a problem. If the additional semantics are not
correctly encoded in the XHTML markup, most of their benefits are lost: style sheets do not work
correctly and applications can not retrieve the information they are supposed to process.

To address these issues we propose a language and an editing tool. The tool, based on Amaya,
makes editing Semantic XHTML easier, simpler and more effective. The language, called XTiger
(eXtensible Templates for Interactive Guided Edition of Resources), allows Semantic XHTML to
be clearly described. The editing tool uses document descriptions expressed in this language to help
authors produce valid documents, i.e. documents where the additional semantics are correctly
encoded.

2.3. The XTiger language

The main role of the language is to describe a generic structure in terms of another structure
representation language called the target language. The target language considered above is

D.INF.01: Report on the design of extension mechanisms for creating templates, using templates for
editing and customizing the user interface, and of extensions to be integrated in the information

reuse tool (M3)

3

XHTML, but it could be any other XML language, for instance MathML [Carlisle 03] for
mathematical expressions, SVG [Ferraiolo 03] for animated graphics, etc. It could even be a mix of
several XML languages, thus addressing compound documents. The generic structure is a model
from which document instances are derived. All instances derived from the generic structure are
supposed to comply with the model.

In this regard XTiger is very close to schema languages, and it borrows some of its features from
these languages. But XTiger is much simpler than schema languages, as it relies on the target
language. Thus, it does not need to define every single part of a document type. It only adds more
constraints to an existing document type where it is needed.

XTiger is designed to be used in combination with a target language. It describes a generic structure
under the form of a template. Templates exist in many HTML editors (Dreamweaver, FrontPage,
etc.). Some have a very basic notion of a template. They just propose a series of typical documents
that can be freely edited and adapted without any dedicated mechanism. Some others support a
template language that is interpreted by the editor. In most cases this language is embedded in
comments whose content must follow a specific syntax. In Dreamweaver, for instance, these special
comments can prevent the user from modifying a part of the template document, they can allow
him/her to repeat a given part (possibly 0 time), they can finally let some parts completely free. For
XTiger, we need more expressive power. The template should provide a fine-grained mechanism
for controlling the structure of document instances. It should be able to set different levels of
constraints on the contents of a document.

In our approach, a template is a skeleton document, expressed in the target language, which
contains elements of the XTiger language in various places. The role of these XTiger elements is to
specify what elements and attributes of the target language must, should or could be present at these
places, possibly with some predefined values. That is the core of the language, which specifies the
structure and the content of document instances. It is complemented with other features that make
the language easier to use. These features allow for instance structure fragments to be defined once
and to be used at several places, in one or several templates. They facilitate a modular construction
of document types, by sharing reusable pieces of structure.

XML is a natural choice for the syntax of XTiger, as its main role is to describe structures. In
addition, using the same syntax for the structure description language and for the target language
can simplify implementation. XML also provides the namespaces mechanism [Bray 04b] for mixing
different languages while still making a clear distinction between them. This is also a distinctive
feature. In many HTML editors the template language is hidden in comments and has no structure.

Taking advantage of XML namespaces, in the following we use the prefix t: for all names from the
XTiger namespace, while names from the target language are not prefixed.

2.3.1. Types

Like in a schema language, types can be defined in XTiger. Types are used to define pieces of
structure that may occur at several places in a template or in several templates.

Types are built from basic types using constructors.

In the initial version of XTiger, there are a few basic types, like in programming languages: number,
string, boolean. In the future this short list could grow and include datatypes like those used in XML

Palette FP6-028038

4

Schema [Fallside 04]. These basic types may be used to specify the content of some part of a
document. For instance, the three span elements that appear in example 1 use the basic type string
for their content (element t:use is presented in section 2.3.3 below).

Basic types are also used to build more complex types. Element t:component is a constructor that
creates a new type containing different elements, both from the XTiger language and from the target
language. In the Report template, we could define a type refbook that would be useful in the
bibliography to refer to a book (see example 1 for a simplified version). We can similarly define
other types of bibliographic citations to refer to articles (refarticle), technical reports
(refreport), etc.

<t:component name="refbook">
<p class="refbook">

<t:repeat minOccurs ="1">

<t:use types="string"/>

</t:repeat>

<t:use types="string">Book title</t:use>

<t:use types="string">Publisher</t:use>

</p>
</t:component>

Example 1: a component

Element t:union is another constructor. It defines a new type as the union of other types. In
example 2 the new type bibref is defined as the union of the different types of bibliographic
citations we have already defined.

<t:union name="bibref" include="refbook refarticle refreport"/>

Example 2: a union of types

To simplify the writing of templates, a few unions are predefined. Union any includes all basic
types, plus all types defined by the component and union elements, plus all types of the target
language. The other predefined unions are more selective: anySimpleType includes only the simple
types, anyComponent includes only the types defined by a t:component element, anyElement
includes only elements of the target language.

2.3.2. Structure description

In a template, everything specified in the target language must occur as is in all document instances,
except when a XTiger element states otherwise. The top level structure of a Report like this one
(title, authors, introduction, sections, bibliography) is represented in a template simply by its
XHTML markup. The contents of these elements are obviously not pre-defined. They must then be
represented by some XTiger elements.

D.INF.01: Report on the design of extension mechanisms for creating templates, using templates for
editing and customizing the user interface, and of extensions to be integrated in the information

reuse tool (M3)

5

One of these elements is t:repeat, which allows a structure to be repeated several times. The
structure to be repeated is the content of the t:repeat element. Example 3 shows how the
introduction of a Report is defined as a div that contains a h2 (heading in XHTML) with a
predefined content, followed by a sequence of p (paragraph) elements.

<div class="intro">
<h2>Introduction</h2>
<t:repeat>

<t:use types="p"/>
</t:repeat>

</div>

Example 3: the repeat element

In example 3, the structure to be repeated is a single element of type p in the target language, and
the content of this element is completely free. In many cases the structure is not that simple. Types
defined by a component or a union may be used in these cases. Example 4 shows how a more
constrained structure can be defined. It specifies the structure of the bibliography in the Report
template. After a h2 element with a predefined content, five to twenty instances of the structure
defined by type bibref (see example 2) may occur. The number of occurrences of the repeated
structure is specified by two attributes, minOccurs and maxOccurs, which indicate respectively the
minimum and maximum number of occurrences.

<h2>Bibliography</h2>
<t:repeat minOccurs="5" maxOccurs="30">

<t:use types="bibref"/>
</t:repeat>

Example 4: bibliography template

A structure that can be repeated 0 or 1 time is treated as a special case, as authors consider this as an
option rather than a repetition. It is represented by an element without any attribute, t:option.

2.3.3. Content and attributes

The basic types and the types defined by elements t:component and t:union, as well as the
predefined unions, are used by the t:use element. Wherever this element appears in a template, it
indicates what type of element can be inserted at this position. This includes also the types from the
target language.

The t:use element constrains the type of the element that can appear at its position, but not their
contents. In example 3, the elements following the h2 must be paragraphs (p), but these paragraphs
may contain anything. Note that in example 1, two t:use elements have a content. This is
considered as an indication of a possible content, but it may be changed freely in a document
instance. This is different from the content that appear in a target language element, which can not
be changed in an instance document: the content of the h2 in example 3 must always be
"Introduction".

Obviously, it is possible to restrict the content of an element produced by t:use. If the types
attribute of a t:use specifies a component, the t:use element must be replaced in a document
instance by the exact structure of the component. Only the sub-elements of the component that are
explicitly not fixed can be different. According to example 1, an element <t:use

Palette FP6-028038

6

types="refbook"> will be replaced in an instance by a p element with an attribute
class="refbook" and this element will contain one or more span elements with attribute
class="bibauthor" followed by a span with class="title" and another with class="pub".
Only the number of authors and the content of the span elements are free.

While t:use is mainly used to constrain the structure, the t:bag element brings some freedom
where it is needed. It defines the set of types that can be used in the subtree that will replace it in a
document instance. It constrains only the element types, but not the way they are assembled. The
t:bag element has a types attribute which specifies the allowed element types. This is a list of type
names that may contain basic types, unions, components, and element types from the target
language. In the Report template, we use t:bag to define the content of a section. See example 5
which defines the body of a Report.

<t:repeat minOccurs="1">
<div class="section">

<h2>
<t:use types="string">Heading</t:use>

</h2>
<t:repeat>

<t:bag types="anyElement"/>
</t:repeat>

</div>
<t:repeat>

Example 5: a bag

With this definition, any XHTML elements could appear after the initial h2 in a section. In fact, the
definition is a bit more restrictive. Like all other XTiger elements, t:bag is not supposed to violate
the structure of the target language. XTiger simply adds more rules for using the target language.
The rules stated in the DTD or schema of the target language still apply. In the section defined in
example 5, although the XTiger definition of anyElement includes XHTML elements such as
head, body, or meta, the XHTML DTD makes them invalid within the div element representing a
section.

XTiger does not consider only the elements of the target language, but also its attributes. Element
t:attribute defines rules for using an attribute from the target language. It always appears as a
child of an element of the target language and specifies how to use a given attribute with this
element. It may make an attribute mandatory or optional, it may specify a fixed value, a default
value or let the value free. It may also prohibit the attribute to be associated with the element.
Again, these constraints should not contradict those from the DTD or schema.

<t:component name="author">
<p class="author">

<t:option>

<t:attribute name="alt" default="picture of the author"/>
<t:attribute name="width" use="optional"/>

</t:option>

...
</t:component>

Example 6: defining attributes

D.INF.01: Report on the design of extension mechanisms for creating templates, using templates for
editing and customizing the user interface, and of extensions to be integrated in the information

reuse tool (M3)

7

Example 6 defines the type author for use in the Report template. This type includes an optional
element img which is supposed to be a picture of the author. The first t:attribute in the example
makes the alt attribute of the img element mandatory and provides a default value for it. The
second t:attribute element states that the img could have a width attribute. Note that the
XHTML DTD already says so, but if this statement was not present, users could not set the width of
these images: attributes that are not explicitly mentioned in a template are forbidden in the instance.
Nothing is said about the src attribute of the img, but the XHTML DTD makes this attribute
mandatory. It is then mandatory in any instance derived from the template where the component
author is used. There is simply no additional constraint on this attribute in type author.

2.3.4. Other features

Elements t:component and t:union define new types. In a template, they are grouped at the
beginning of the document in a special element, t:head. This element is unique in the template and
must appear before using any type it defines.

In addition to type definitions the t:head element may contain some t:import elements, which
import external definitions for use in the template. These external definitions are grouped in
separate documents called libraries which, like element t:head, contain type definitions and
t:import elements: a library may import other libraries.

Element t:import has a single attribute, src, that contains the URI of the library to be included.
The order of the t:import elements is used to choose among different type definitions that have the
same name: the latest imported library wins.

Libraries allow types that are used in different templates to be shared. They are especially useful for
popular microformats. In the Report template, types bibref, refbook, refarticle, refreport
would typically be defined in a library to be used also in templates for articles, theses, and other
types of scholar documents.

2.4. Implementation issues

XTiger was designed to be implemented in a document editor. It represents generic structures in a
way that could be efficiently used by an editor to help authors structure and encode Semantic
XHTML. It has now to be implemented as an extension of Amaya. In this implementation work the
main issues to be considered are structure manipulation and user interface. In this report we only
mention the main directions for addressing these issues.

2.4.1. Structure manipulation

In its original version, Amaya provides the editing feature for the target language. For supporting
XTiger templates, Amaya has to be extended to handle the generic structure defined by the XTiger
elements, in addition to the XHTML structure. These two structures are tightly mixed, and the
editor has to handle them simultaneously. Fortunately, Amaya already supports namespaces. But the
XTiger namespace is a bit special as compared to other namespaces that are already supported in
Amaya. It is not a document format, like SVG or MathML, for instance. The XTiger elements are
not supposed to be displayed as part of the document, but their semantics must be interpreted by the
editor to guide the editing process and to make sure that the editing actions of the user are executed
in accordance with the generic structure described by the XTiger template.

Palette FP6-028038

8

When a user wants to create a document from a template, the new document instance is created as a
copy of the template. The t:head element with its type definitions, however, is not copied in the
document instance, as type definitions are intended to be shared. The template is linked to the new
instance by a processing instruction inserted at the beginning of the instance, in the same way CSS
style sheets are linked to an XML document. With this link, the editor will find all the type
definitions needed during the subsequent editing sessions. All other XTiger elements (t:use,
t:bag, t:repeat, t:option, t:attribute) as well as all target language elements are kept in the
copy that constitutes the initial instance. XTiger types that appear in these elements are replaced by
references to their definition in the template (actually, by references to a more compact and more
accessible representation of types in core memory).

When the instance has been created, the user can see a skeleton of the document to be written.
He/she then interacts with the editor to develop the structure and provide contents. This is done
following all constraints, those expressed by the XTiger elements and those of the target language
expressed by its DTD. When creating new elements, both target language elements and XTiger
elements are created. For instance, when adding a new element in the t:repeat that allows several
sections to be created in a Report, the whole template of the new section is created (see example 5).
This allows the editor to know what is allowed by the template and what is not, just by looking at
the current position in the document: the local XTiger elements express the local constraints. As a
consequence, the edited document can be seen as a template that grows.

Guiding the user and checking the document structure is basically what Amaya is natively doing for
the target language, but the difference with templates is that the generic structure described by
XTiger elements is not separated from the document, like a DTD or a schema. It is part of it. There
is no need to first go to the DTD or schema and find the rules that are relevant to the current
position. On the other hand, the XTiger elements and attributes that are interspersed in the
document have to be processed in a special way. When editing a document instance, they are not
supposed to be modified by the user in the same way a mathematical expression can be modified
within a XHTML page for instance.

As an example, consider how a new section may be added in a Report. According to example 5, the
editor is allowed to create a section as a child of the t:repeat element. Following the definition of
example 5, it creates this structure:

<div class="section">
<h2><t:use types="string">Heading</t:use></h2>
<t:bag types="anyElement">

</t:bag>
</div>

Notice that it repeats the t:bag and t:use elements from the definition, thus developing the
template and indicating what is allowed at each position. The content of the t:use element is an
ordinary string, "Heading", that can be edited freely. However, this string is still enclosed in a
t:use element that prevents the editor from adding any other type of element in the h2.

The generated t:bag element tells the editor that it is allowed to create any element of the target
language in it, at the position of the empty line. If this element was not generated, the editor could
not create anything there, in the same way it can not create anything before the h2. The generated

D.INF.01: Report on the design of extension mechanisms for creating templates, using templates for
editing and customizing the user interface, and of extensions to be integrated in the information

reuse tool (M3)

9

structure for the new section is considered as part of the template, and then it can not be modified
where it is not explicitly stated, like in the t:use or t:bag elements.

2.4.2. User interface issues

Even if XTiger elements are not supposed to be displayed like elements from the target language, it
is useful for the user to see them, in order to know what is allowed at each position in the document.
For this purpose, a special visual representation is needed. Areas where the user can make changes
will be displayed with special borders. Other parts of the document are locked: editing is not
allowed there.

The user needs not only to visualize the XTiger elements, but also to interact with them. He/she
needs to create or remove elements in a t:repeat, to create or delete the content of a t:option, to
insert the content of a t:use, to create elements in a t:bag, and to edit attributes according to a
t:attribute. When creating the content of these XTiger elements, choices have to be made
among the possibilities offered by a t:union.

Some of these operations can be done with the usual user interface of Amaya. For instance, deleting
an element in a t:repeat will be done with the usual Delete command (however, the Delete
command has to be extended to avoid deleting elements that are made mandatory by their parent
XTiger element). The user interface of Amaya will be extended to allow the user to perform all
these operations.

3. Authoring model for LimSee3

Amaya is dedicated to compound documents. It can handle documents containing different forms of
information: structured text and images in XHTML, structured graphics in SVG, mathematical
expressions in MathML. It handles only discrete media. For editing continuous media such as video,
sound, animations, a different tool is available, LimSee2, which can produce document in the SMIL
format [Bulterman 05]. SMIL is an XML language for multimedia documents where time and
synchronization play a key role. It is sometimes called the XHTML of multimedia.

LimSee2 is based on the same principle as Amaya. It is controlled by the SMIL DTD and helps
authors to produce valid SMIL documents. Like Amaya, its authoring model is very close to the
format it handles and for specialized documents a more powerful model is needed.

3.1. From LimSee2 to LimSee3

When developing LimSee2 the goal was to provide graphical UI components to assist the user in
the edition of a SMIL document. LimSee2 is an open-source and cross-platform Java application
that totally fulfills this objective. Nevertheless, this approach of directly manipulating the SMIL
format might not appeal to the general user for several reasons:

• the intrinsic complexity of SMIL can not be ignored and a good knowledge of the SMIL
language is required.

• the manipulation of the low level SMIL structures is not suited to complex authoring tasks.
• SMIL does not provide very rich information about the semantic structure of the

document. The only way to give hints on the logical structure is to set meaningful id
values to the SMIL structures.

Palette FP6-028038

10

• the extension of the SMIL format with foreign namespaces and/or metadata, while keeping
a valid document, would quickly raise scalability and maintainability issues, along with the
usual problems related to players compatibility.

Moreover, the design and architecture of LimSee2 might be improved. The application lacks a
"pure" document model module. It partly mixes core information with UI components and it makes
heavy use of expansive string manipulations (for parsing XML attributes values for instance).

This is why the idea of using an intermediate and dedicated authoring format has emerged. It would
additionally offer the possibility to be exported to virtually any format from the SMIL family: SMIL
itself (any version or any profile), XHTML+SMIL (or "HTML+TIME", effectively), Animated
SVG, XMT-O, etc.

This intermediate format is the core of LimSee3, a successor of LimSee2 but a totally new software.
The principles guiding the design of this new project are:

• Ease of use: the authoring format should be easily manipulated and the user interface
should be as intuitive as possible.

• Expressivity: the authoring format should allow the creation of a wide set of complex
hypermedia presentations.

• Extensibility: the authoring format should be effectively extensible, enabling complex
authoring tasks as new functionality.

• Customizability: the application should be configurable by lots of user-defined settings;
the interface should also be customizable.

3.2. Document model

While the LimSee2 editor was built to allow authors to manipulate all aspects of the SMIL
language, LimSee3 will be less dependent on the language. It will still be able to generate
documents coded in SMIL and other languages based on (or derived from) SMIL, as explained
above, but it will not require the user to "think" in SMIL. It will present the user with a more
friendly document model, where s/he will be more comfortable, manipulating entities that are closer
to what s/he has in mind in terms of document model.

3.2.1. Object approach

From the user perspective, a multimedia document is logically structured in several high level
objects that have their own semantics:

• The slide show is composed by a sequence of images and a navigation bar.
• The navigation bar has two buttons, a previous button and a next button.
• A navigation button is an image with a link to another object.

This object approach has been chosen for the LimSee3 authoring format: a LimSee3 document is a
nested structure of semantically significant objects. This strong semantical cohesion is very
important in terms of usability: objects can easily be abstracted and manipulated as entities by the
user.

D.INF.01: Report on the design of extension mechanisms for creating templates, using templates for
editing and customizing the user interface, and of extensions to be integrated in the information

reuse tool (M3)

11

Note: In SMIL, the definition of these high-level objects is distributed in different parts of the
document (in the header for the spatial information, in the body for the temporal information).

Each object defines its own temporal and spatial dimensions. The object may specify how it can
interact with other objects if needed. Additionally, dedicated edition services may be associated to
each object according to their specific semantics.

The whole document can then be viewed as a tree of objects, as shown in the following example:

+ slideshow

+ sequence of slides

+ slide

- image

- title

+ slide

- image

- title

+ navigation bar

+ previous button

- image

- link

+ next button

- image

- link

3.2.2. Objects hierarchy

3.2.2.1. Media assets and media objects

A media asset is a reference to an external resource which is totally independent of any integration
context. It is referenced consistently by its URI. It can be for instance an audio track (an mp3 file, a
real audio stream, etc.), a video, a piece of text, an image, an animation, etc. A media asset is not an
object as specified.

Each media asset has at least two properties: its media type, which specifies the family of media to
which it belongs (image, audio, video, text, animation), and its media encoding, which specifies the
format used to store its content (for instance jpeg, wav, mov, wmv). The media type and media
encoding properties can be determined from the underlying resource by either its MIME type or the
usual file naming conventions (file extensions).

A media object is the simplest object (i.e. the atomic object) of the authoring format. It is a wrapper
around a media asset, but it also defines the properties related to its integration in the document
(mostly spatial and temporal information). A media object can optionally apply minor
transformations to the wrapped media asset (cropping, transparency).

It is very similar to the SMIL media object element:

Note: The src attribute is identifying the media asset wrapped by this media object.

Palette FP6-028038

12

3.2.2.2. Rich objects

A rich object is a composite object, a complex structure of other nested objects. The XML element
containing the definition of a rich object is called object.

Each rich object is defined by at least the following information:

1. The list of its children objects, i.e. the sub-objects that are nested in this object. This is the
children element.

2. A section that describes the timing scenario of this object, i.e. the information that
describes the synchronization of its internals. This is the timing element.

3. A section that describes the spatial layout of this object, i.e. how the internals of this object
are positioned in the space allowed to this object. This is the layout element.

In XML, the global structure of a rich object is hence the following:

<object>

<children>

<!-- a list of the sub-objects -->

</children>

<timing>

<!-- the internal timing scenario -->

</timing>

<layout>

<!-- the internal spatial layout -->

</layout>

</object>

The timing section can contain SMIL timing elements, such as par, seq or excl, which should be
in the SMIL namespace. Sub-objects of this object can be used in the timing section referenced by
their ID with the timeRef element, as in the following example:

<timing xmlns:smil="http://www.w3.org/2001/SMIL20/">

<smil:par>

<timeRef refId="subObj1" smil:begin="0s" smil:fill="freeze"/>

<timeRef refId="subObj2" smil:begin="1s" />

</smil:par>

</timing>

The layout section can contain SMIL region elements which should be in the SMIL namespace.
Sub-objects of this object can be used in the layout section referenced by their ID with the
layoutRef element, as in the following example:

<layout xmlns:smil="http://www.w3.org/2001/SMIL20/">

<smil:region id="objRegion" left="0" top="0" height="100" width="50">

<layoutRef refId="subObj1" smil:height="50" smil:top="0"/>

<smil:region id="subObjRegion" height="50" top="50"/>

</smil:region>

</layout>

D.INF.01: Report on the design of extension mechanisms for creating templates, using templates for
editing and customizing the user interface, and of extensions to be integrated in the information

reuse tool (M3)

13

3.2.3. Object-to-object relations

In the LimSee3 authoring format, an object is an almost independent entity. However, in most
cases, these objects will be related one with another. For instance in a slideshow the navigation bar
is somehow related with the sequence of slides, as previous and next buttons are actually links to
slide objects.

To represent these object-to-object relations, an object can contain a dedicated related element.
This element declares symbolic references to external objects, which can then be used in the timing
and layout sections of the master object.

An object can have access to the information of a related object by using an XPath expression. This
information can be used for instance to set attribute values in the layout and timing section using an
XSLT-like syntax.

In the following example, the object myObject is a sequence of two audio tracks that starts when
the external object extObject ends:

<object id="myObject">

<related>

<ref name="master" refId="extObject"/>

</related>

...

<timing xmlns:smil="http://www.w3.org/2001/SMIL20/">

<smil:seq>

<attribute name="begin">

<value-of select="@id" refName="master"/>.end

</attribute>

<audio src="audio1.mp3"/>

<audio src="audio2.mp3"/>

</smil:seq>

</timing>

...

</object>

3.2.4. Comments on the document model

By defining almost independent objects, the LimSee3 authoring format focuses on the logical
structure of the multimedia document. It is actually a kind of reorganization of a SMIL document in
order to ease the manipulation of high-level entities with strong semantics. This may greatly
facilitate complex authoring tasks such as the insertion of a whole complex object in a multimedia
document as a single entity, performed for instance by a unique simple drag-and-drop operation.

The power of XML in terms of structural transformation and extraction of information allows the
user to view the same document from different perspectives:

• the complete structure (the whole XML tree)
• the logical structure (the tree of objects)
• the timing scenario (global or per object)
• the global layout hierarchy (global or per object)
• the objects dependency graph

Palette FP6-028038

14

• the table of media assets used in the document

Having access to these different views of the document allows each authoring task to use the one
that is the most appropriate.

3.3. The templates model

The user of an authoring tool may want to create several instances of a same class of document (for
instance a slide show, a quiz, a captioned movie). To facilitate such redundant creation of complex
documents, the authoring format permits the definition of template documents. These are special
documents having a preset shape and used as starting point to create document instances.

3.3.1. Template documents and template objects

A template object is the abstraction of an object from any integration context. The definition of
objects as entities facilitates this concept. Note that the declaration of related objects in a separate
element and the use of mere symbolic references in the object body greatly facilitates this
abstraction.

A template document is a document with a structure predefined by a set of constraints. The
constraints on the document structure may be viewed as reserved places to be filled with
instance-specific content and that may have incidence on other parts of the document. A template
document is actually a document composed by objects and template objects.

3.3.2. Media zones

A media zone is the most basic template. It can be viewed as a reserved place for a media asset. It is
actually a media object that does not yet reference a media asset, as in the following example:

The application knows that a reference to a media asset (i.e. a URI) is required at the place where a
media zone is inserted and then invites the user to fill the required information.

The template can optionally define a customizable invitational text that can be displayed to the user.

<invitText>Please add image here</invitText>

The invitational text will be removed once the zone is filled with a media asset.

3.3.3. Repeatable structures

A repeatable structure is an homogeneous list of objects, i.e. a list composed by objects the
structure of which matches the structure of a specified model object. Such a list is declared with the
objList element. The model for the children of a list is declared in the model element (the first
child element) as in the following example:

D.INF.01: Report on the design of extension mechanisms for creating templates, using templates for
editing and customizing the user interface, and of extensions to be integrated in the information

reuse tool (M3)

15

<object id="SlideSequence">

...

<children>

<objList>

<model>

<object>

<!-- the definition of a slide -->

</object>

</model>

</objList>

</children>

...

</object>

The addition of an item to the list of objects is a simple copy operation of the model object to the
list content.

Note that the cardinality of the list may be specified by minimum and maximum item counts.

The items of a list of objects can be used in the timing and layout section of the parent object with
the timeRefList and layoutRefList elements. Note that the list can select only a subset of the
list items if required, with an XPath expression.

<object id="SlideSequence">

<children>

<objList id="slides">

<!-- a list of slides -->

</objList>

</children>

<timing>

<seq>

<timeRefList refId="slides" />

</seq>

</timing>

<layout>

<region id="regionSlides" height="400" width="200">

<layoutRefList refId="slides"/>

</region>

</layout>

</object>

Note that since such a list of objects is homogeneous and defines a model for its children, the
structure of each child is well known and can be accessed finely with XPath to extract useful
information. This information can then be used to set attribute values in the layout and timing
section with an XSLT-like syntax. This is a powerful mechanism for defining structures that depend
dynamically on the list content.

Suppose for instance we want to create a hierarchical list of entries and the hierarchical level is
declared in a param element with the name level. The layout section of this list of entries could be:

Palette FP6-028038

16

<layout>

<layoutRefList refId="Entries">

<attribute name="left">

<number value="10*number(param[@name='level']/@value)"/>

</attribute>

<attribute name="top">

<number value="20*count(preceding-sibling::*)"/>

</attribute>

</layoutRefList>

</layout>

3.3.4. Instantiation of a template

The concepts of objects and templates are very similar. Actually, a template is an object that is not
complete, lacking several parts of information: references to related objects, list items, references to
media assets, etc. The instantiation of a template is the operation of providing all this lacking and
required information. A template is instantiated when:

• Each media zone has been filled with a media asset.
• Each object list has been filled with object items (possibly 0).
• Each reference to a related external object has been resolved.

3.4. Issues and future extensions

3.4.1. Locked parts

The authoring format, in particular the template language, does not prevent the user to modify parts
of the document. Templates are mere guides to the edition of a document, but the user can still
modify any part of the document if s/he wants to.

It could be useful to allow the definition of locked parts in a template, i.e. parts where the user is not
allowed to modify anything. This could be useful for instance to guide more strongly inexperienced
users by restricting their access to the only parts of the document that make sense to them.

3.4.2. Heterogeneous lists

Repeatable structures are defined as homogeneous lists of objects. However, it may be useful to
allow multiple types of content in such a list. For instance the user might want to define a list of
either images or text objects. The trouble is that when dealing with heterogeneity the structure of
each list element is unknown.

3.4.3. Object types

The objects of this document model are not typed. It could be very useful to specify that a given
object conforms to a specific type, for instance a "sequence of images" or a "slide". Moreover, such
types give precise knowledge about the structure of objects, which can result in finer usage of
external references for instance.

D.INF.01: Report on the design of extension mechanisms for creating templates, using templates for
editing and customizing the user interface, and of extensions to be integrated in the information

reuse tool (M3)

17

However some issues remain unsolved, as the design of the inheritance of types, or the inference of
a type given a specific object. Given the complexity of dealing with strongly typed structures
(modification, validation) and defining such types, the authoring format does not follow this
approach.

An intermediate step is to define only a few classic patterns. For instance a sequence type would
be an object which is composed by a single object list and whose timing section would consist in a
single seq element containing references to the list items.

3.4.4. High level concepts and syntax choices

Sometimes there are several possibilities to express the same idea. For instance, in SMIL a
synchronization relation between two lists of objects could be described by syncbase begin values
or by multiple par elements in a seq parent.

However, from the user's point of view the result is the same. The authoring format should choose a
consistent syntax and optionally allow to use other solutions at export time.

Among the high level concepts that the authoring format might define are:

• synchronization relations
• the state of an object
• the style of an object

4. Document reuse tool

The aim of the information reuse tool is to allow existing documents initially structured for a given
purpose to be restructured for use in a different context, thus improving reusability and information
sharing between communities of practice. A notion closely tied with structured document reuse is
that of structure transformations. Schema matching is a critical step in structured document
transformations. Manual matching is expensive and error-prone. It is therefore important to develop
techniques to automate the matching process and thus the transformation process. The information
reuse tool takes two XML schemas as input and produces a mapping describing the similarities
between those schemas. The latter output serves as the basis for the automatic generation of
transformation scripts.

4.1. Automating structured document transformations

4.1.1. Related work

Several approaches focusing on automating XML document transformations have been recently
proposed in the document community. Examples include the work described in [Leinonen 03],
where authors propose a syntax directed approach for automating structure transformations between
two grammars based on finite state tree transducers. This approach presents several limitations. First
it works only if the two grammars have common parts, which restricts the scope of transformations
to local transformations. Moreover, this approach is unable to resolve the heterogeneity that may
occur between structured documents.

Palette FP6-028038

18

The authors of [Su 01] propose an approach for automating the transformations of XML documents.
To this end they define a set of DTD transformation operations that establish the semantic
relationships between two DTDs. The approach is based on a tree matching algorithm, called
DMatch. The matching process is based on both provided auxiliary semantic information and a cost
model. This approach presents several limitations. First the matching algorithm used is only able to
discover one-to-one correspondences between DTDs and does not deal with many-to-many
matches. Second, the matching algorithm requires additional semantic information to work
correctly, which limits the scope of its application, since such semantic information is not always
available. Finally, the matching algorithm used is inspired by work done in the area of tree
matching and is unable to deal with the current XML schema model.

Additionally to the document community, database and artificial intelligence communities have
widely considered the schema matching problem in many application domains. With the growing
use of XML, several matching algorithms take into consideration the hierarchical structure of XML.
In the following, we present some examples and check their applicability in the context of XML
data transformations.

Cupid (Microsoft Research)

Cupid is a hybrid matcher combining several matching methods [Madhavan 01]. Cupid transforms
the original XML schemas into trees and then performs a bottom-up structure matching. The basic
assumption behind the structure matching phase of Cupid is that much of the information content is
represented in leaves and that leaves have less variation between schemas than internal structures.
Thus the similarity of inter-nodes is based on the similarity of their leaf sets. Schema structure in
Cupid is used as a matching constraint, that is, the more the structures of the two nodes are similar,
the more the two nodes are similar. For this reason, Cupid faces problems in the cases of equivalent
concepts occurring in completely different structures, and completely independent concepts
belonging to isomorphic structures.

Similarity Flooding (Stanford Univ. and Univ. of Leipzig)

In [Melnik 02], authors present a structure matching algorithm called Similarity Flooding (SF). For
computing structural similarities, SF relies on the intuition that nodes of two distinct graphs are
similar when their adjacent nodes are similar. The spreading of similarities in the matched models is
reminiscent to the way how IP packets flood the network in broadcast communication. An iterative
process is used to propagate similarities between nodes, where in every iteration the similarity of a
map pair is incremented by the similarity of its neighbours. An important assumption behind the
algorithm is that adjacency contributes to similarity propagation. Thus, the algorithm will perform
unexpectedly in cases when adjacency information is not preserved. Furthermore, SF ignores all
type of constraints while performing structural matching. Constraints like typing and integrity
constraints are used at the end of the process to filter mapping pairs with the help of the user.

4.1.2. Shortcomings and requirements

As explained in the previous section, the proposed structural matching methods suffer from several
serious shortcomings when applied in the context of XML documents transformations. The two
basic problems we faced when trying to apply existent schema matching algorithms in the context
of document transformations could be summarized as follows:

D.INF.01: Report on the design of extension mechanisms for creating templates, using templates for
editing and customizing the user interface, and of extensions to be integrated in the information

reuse tool (M3)

19

Figure 1: Prototype system

• Structural matching methods remain insufficient and very limited (they generally deal only
with DTDs and exploit few structural characteristics, essentially parent-child
relationships). Convinced that the structural organization in XML documents inferred
some semantics of the data and traduced the designer point of view, a solution to XML
schema matching problem should exploit this information in a manner that increases
matching accuracy.

• The second fundamental problem concerns the result of the mapping process itself.
Generally current schema matching algorithms only focus on discovering 1-1 mappings,
also called “direct mapping”. The result is a confidence score (ranging in [0,1]) between
schemas’ elements. Such a result is insufficient to perform transformations. The proposed
solution should discover “complex mappings” (involving more than one source and/or
target elements). In order to generate a transformation script, the solution should be able to
further discover transformation operations.

4.2. Current state of the information reuse tool

The current prototype of the information reuse tool we have developed consists of three modules:
Conceptualization toolkit, Matcher engine, and XSLT generator describing the phases that we
consider fundamental in our work (Figure 1).

4.2.1. The conceptualization toolkit

The conceptualization toolkit consists on two modules: The schema graph generator and the schema
graph visualizer.

Palette FP6-028038

20

4.2.1.1. The schema graph generator

As mentioned above, up to now few existent XML schema matching algorithms focus on structural
matching exploiting all XML schema features. We propose an abstract model that serves as a
foundation to represent conceptually W3C XML schemas and potentially other schema languages.
We model XML schemas as a directed labelled graph with constraint sets, called schema graph.
The schema graph serves to make clear XML schema features used within the matching process. In
addition, it can be used in order to normalize XML schema languages into a uniform representation,
hiding syntax differences and making structural and semantic heterogeneity more apparent.

Schema graph nodes
We categorize nodes into atomic nodes and complex nodes. Atomic nodes have no edges
emanating from them. They are the leaf nodes in the schema graph. Complex nodes are the
internal nodes in the schema graph. Each atomic node has a simple content, which is either an
atomic value from the domain of basic data types (e.g., string, integer, date, etc.); or a
constructional value, meaning a list value or a value or a union value. The content of a
complex node, called complex content, refers to some other nodes through directed labelled
edges.

Schema graph edges
Each edge in the schema graph links two nodes capturing the structural aspects of XML
schemas. We distinguish three kinds of edges: (1) containment relationship, that is a composite
relationship in which a composite node (“whole”) consists of some component nodes (“parts”);
(2) of-property relationship, that specifies the subsidiary attribute of a node; and (3)
association relationship, that is a structural relationship, specifying that both nodes are
conceptually at the same level. Association relationships essentially model key/keyref and
substitution group mechanisms.

Schema graph constraints
Different constraints can be specified with the XML Schema language. These constraints can
be defined over both nodes and edges. Typical constraints over an edge are cardinality
constraints. We also distinguish three kinds of constraints over a set of edges: (1) ordered
composition, defined for a set of containment relationships and used for modelling XML
Schema “sequences” and “all” mechanisms; (2) exclusive disjunction, used for modelling the
XML Schema “choice” and applied to containment edges; and (3) referential constraint, used
to model XML schema referential constraints. Referential constraints are applied to association
edges, and are generally modelled through a join predicate. Other constraints are furthermore
defined over nodes. Examples include uniqueness and domain constraints. Domain constraints
are very broad. They essentially concern the content of atomic nodes. They can restrict the
legal range of numerical values by giving the maximal/minimal values; they can limit the
length of string values, or constrain the patterns of string values.

4.2.1.2. The schema graph visualizer

Generated schema graphs are displayed graphically using the schema graph visualizer (Figure 2).
Such a graphical representation has three major advantages. First, it helps the user (which is not
necessary familiar with the syntax of the XML schema language) to understand what both source
and target schemas describe. Second, since we assume that the user knows the semantics of the
target schema, based on such a graphical representation he can either add meta-information that

D.INF.01: Report on the design of extension mechanisms for creating templates, using templates for
editing and customizing the user interface, and of extensions to be integrated in the information

reuse tool (M3)

21

Figure 2: Schema graph visualizer

could help the matching process or even establish an initial mapping. Finally, this graphical
representation could be used later in the mapping validation phase, especially when the user is
invited to change the target schema (relax some constraints in order to make data reuse possible).
Schema changes could then be done graphically without dealing with the XML schema language
syntax.

4.2.2. The matcher engine

The matcher engine consists of two modules: mapping discovery and mapping structuring. To
match schema graphs, we make use of four basic matching criteria (1) terminological matching, (2)
datatype compatibility, (3) designer type hierarchy and (4) structural matching.

4.2.2.1. Terminological matching

The aim of this phase is to compute the similarity between schema nodes based on the similarity of
their labels. To perform terminological matching, we make explicit the meaning of element names
and establish semantic relationships between them based on WordNet. Our terminological matching
is inspired essentially from Hirst and St-Onge’s work [Hirst 98]. The idea behind Hirst and
St-Onge’s measure of semantic relatedness is that two concepts are semantically close if their
WordNet synsets are connected by a path that is not too long and that does not change direction too
often. A set of allowable paths have been then defined. The terminological similarity between two
words is computed based on the length of the path relating them. Moreover, we identified four kinds

Palette FP6-028038

22

of semantic relations between words, namely equivalent (≡), broader than (⊇), narrower than (⊆),
and related to (~). The detailed algorithm is given in [Boukottaya 04] and [Boukottaya 05].

4.2.2.2. Datatype compatibility

To compute datatype similarities, we make use of the built-in XML schema datatypes hierarchy.
XML schema datatypes are classified in multiple categories (called primitive datatypes) including
for example Duration, Boolean, String, Decimal, etc. Each category has several derived datatypes.
Two datatypes are considered to be similar if they belong to the same datatype category, and their
datatype compatibility depends on their respective position in the XML schema datatype hierarchy.
Based on the XML Schema datatype hierarchy, we construct a datatype compatibility table that
gives a similarity coefficient between two given datatypes.

4.2.2.3. Designer type hierarchy

XML schema features concerning sub-typing, abstract types and substitution group mechanisms
traduce the designer point of view and are used as a set of meta-data to help the matching process to
discover both direct and complex mappings. The result of this step is a set of direct and complex
mappings (essentially involving Union/Selection operators). Such mappings are be kept or rejected
using either structural matching techniques or user intervention. In the case where type hierarchy is
not available, we also make use of semantic relationships discovered by the terminological
matching to derive complex matches. However, we give the priority to the designer type hierarchy
since it reflects the designer point of view. More examples and algorithms on how to derive match
candidates based on type hierarchy are detailed in our previous work [Boukottaya 04].

4.2.2.4. Structural matching

The matching techniques described in the sections 4.2.2.1, 4.2.2.2 and 4.2.2.3 may provide incorrect
match candidates. Structural matching is used to correct such match candidates based on their
structural context and thus derive correct direct and complex matches. Structural matching relies on
the notion of node context. We distinguish three kinds of node contexts depending on positions in
the schema graph:

• The ancestor-context of a node n is defined as the path (going through containment edges)
having n as its ending node and the root of the schema graph as its starting node.

• The child-context of a node includes its attributes (through of-property edges) and its
immediate sub-elements (through containment edges). The child-context of a node reflects
its basic structure and its local composition.

• The leaf-context: Leaves in XML documents represent the atomic data that the document
describes. The leaf-context of a node n includes the leaves of the subtrees (composed by
containment relationships) rooted at n.

The structured context of a node is defined as the union of its ancestor-context, its child-context and
its leaf-context. Two nodes are structurally similar if they have similar contexts. To measure the
structural similarity between two nodes, we compute respectively the similarity of their ancestor,
child and leaf contexts. The idea behind our proposed solution is to represent each node context as a
path and to then rely on a path resemblance measure to compare such contexts. To achieve this, we
relax the strong matching notion frequently used in solving query answering problem and use

D.INF.01: Report on the design of extension mechanisms for creating templates, using templates for
editing and customizing the user interface, and of extensions to be integrated in the information

reuse tool (M3)

23

algorithms from dynamic programming [Boukottaya 04] [Boukottaya 05]. The result of this phase is
a structural similarity coefficient (between 0 and 1).

4.2.2.5. Mapping discovery

Most schema matching algorithms produce similarity scores between source and target schema
nodes such as the ones we produce in section 4.2.2.4. Such results partially solve the problem. First,
similarities between individual nodes are not enough to produce access paths for retrieving data
from the available sources. Second, all the produced mappings are one-to-one mappings, complex
mappings identified using the type hierarchy have to be incorporated in the matching result and
further complex mappings have to be discovered. For this we proceed in four steps:

Step 1: Compatible nodes identification
While generating mapping elements, we apply a top-down strategy. At the top level, we
establish correspondences between complex nodes of the target and source schemas. Similar
complex nodes are called compatible nodes.

Step 2: Context generation for compatible nodes
After identifying compatible nodes, we proceed to construct a context for each compatible
node (the notion of context here differs from the context we defined in section 4.2.2.4). By
taking edges around a complex node into account, we cluster a set of nodes and edges with a
complex node as a conceptual component in the schema graph.

Step 3: Node mappings generation
At this point, we finished with the top level comparison between source and target schema
graphs. We are now ready to detect node and edges matches at the bottom level. For each
matching pair which represents two compatible nodes in source and target schema graphs, we
make use of node similarity score generated in section 4.2.2.4 to settle nodes matches.

Step 4: Access paths generation
We focus on the discovery of access paths in order to retrieve source data when performing
transformations. For each target element, we first define the access path indicating where the
matched source elements are localized, then the discovered transformation operation and
finally the conditions under which the mapping element holds true. Examples of generated
mapping rules are given in Figure 3.

4.2.2.6. Mapping structuring

After validation of the generated mapping rules by the user, we structure the mapping result using
the XML Schema language and this for two reasons. First, it is easier to manipulate a structured
mapping result either to modify it or to automatically generate transformation scripts. Second,
structuring the mapping result greatly increases its reusability and adaptation, especially when
schemas evolve. The nature of a mapping result may be understood by considering different
dimensions, each describing one particular aspect: (1) the entity dimension, specifying schema
entities involved in a mapping element; (2) the cardinality dimension: determining the cardinality of
a mapping element ranging from direct mapping (1:1) to complex mapping (m:n); (3) the structural
dimension, reflecting how elementary mapping elements may be combined into more complex
mapping elements; (4) the transformation dimension, reflecting how instances of the source schema
are transformed during the mapping process; and (5) the constraint dimension, controlling the

Palette FP6-028038

24

Figure 3: Examples of generated mapping rules

execution of a mapping element. Based on the established mapping between the source and target
schemas, a mapping generator relates the graphs of a source and a target schema by generating an
instance of the mapping schema containing a set of mapping elements, each of which encapsulates
all information needed to transform instances of source nodes into instances of target nodes.
Figure 4 illustrates an example of mapping instance.

D.INF.01: Report on the design of extension mechanisms for creating templates, using templates for
editing and customizing the user interface, and of extensions to be integrated in the information

reuse tool (M3)

25

<?xml version="1.0" encoding="UTF-8"?>
<mappingResult>

<SourceSchema source="S1.xsd"/>
<TargetSchema source="S2.xsd"/>
<HasMappings type="OneToOneMapping" ID="map1"/>

<mappingElement>
<OneToOneMapping ID="map1">

<Sourcenode name="University"/>
<TargetNode name="University"/>
<Transformation>

<Operation name="connect"/>
</Transformation>
<HasMappings type="OneToOneMapping" ID="map1.1"/>
<HasMappings type="OneToManyMapping" ID="map1.2"/>
<HasMappings type="ManyToOneMapping" ID="map1.3"/>

</OneToOneMapping>
</mappingElement>

<mappingElement>
<OneToOneMapping ID="map1.1">

<Sourcenode name="University/Name"/>
<TargetNode name="Name"/>
<Transformation>

<Operation name="connect"/>
</Transformation>

</OneToOneMapping>
</mappingElement>

<mappingElement>
<OneToManyMapping ID="map1.2">

<Sourcenode name="University/Location"/>
<TargetNode name="city"/>
<TargetNode name="state"/>
<TargetNode name="zip"/>
<Transformation>

<Operation name="split" param= "WS"/>
</Transformation>

</OneToManyMapping>
</mappingElement>
....

</mappingResult>
Figure 4: Examples of structured mapping results

4.2.3. XSLT generator

An XSLT generator is designed to generate XSLT stylesheets from the structured mapping result.
For each matching node pair, the XSLT generator traverses both the target schema graph and the
mapping result in a depth-first manner and generates template rules. It permits the translation of
data instances (XML files) valid against a source schema into instances valid against a target
schema. The algorithm takes as input the target schema graph, the source and target instances, and

Palette FP6-028038

26

the mapping result specification and produces an XSLT stylesheet consisting of a series of template
rules, implementing the transformation. The XSLT generator proceeds in three steps:

Step 1: Initialize the translation
In this step, the XSLT generator tries to locate the first node of the target schema graph having
a match candidate. For non mapped nodes, it acts as follow: if a non mapped target node is not
mandatory (e.g., minOccurrence = 0, or is optional in the case of attribute nodes), nothing is
generated, otherwise just element tags are generated with a warning message indicating that a
value is needed to be added in order to ensure the validity (against the target schema) of the
resulting instance. Once the first mapped node is localized, a queue is initialized and the
template rules generation can begin.

Step 2: Traverse the target schema graph and the mapping result specification in a depth-first
manner

In this step, the XSLT generator produces a construction template for the current node by using
the current mapping element. For each sub-matching element, the XSLT generator adjusts the
above template by inserting more construction or apply-template rules whenever necessary.
For the case of atomic nodes, it inserts a new construction rule and no further process is needed
for this node. Finally, the XSLT generator adds the adjusted templates into the final XSLT
stylesheet. If a non mapped node is encountered, the XSLT generator acts as in step 1. If the
queue is non-empty, the XSLT generator extracts one node as the current node and loops back
to step 2, else it continues to step 3.

Step 3: Return the generated XSLT Stylesheet
In this step, the XSLT generator finalizes the generation of the transformation script. The
structure of the target schema was respected throughout the process of XSLT generation,
which guarantees the generation of valid target instances after the transformation process.

4.3. Extensions to the information reuse tool

With the work presented above, we have made a significant step into understanding and developing
solutions for structured document reuse, however substantial work remains toward the goal of
achieving a comprehensive solution. We would like now to extend the current tool. The following
lists the directions we will pursue.

4.3.1. Robustness issues

The main purpose is to add new capabilities to the existing tool in order to improve the matching
accuracy and thus tool performance.

The current information reuse tool essentially focuses on structural matching, however several
works remain to be done in both terminological and constraint based matching. Concerning
terminological matching, we made the assumption that element names are descriptive and belong to
WordNet as a source of lexical information. However, this assumption does not hold true in
practical cases. Similar schema elements in different schemas often have names that differ due to
the use of abbreviations, acronyms, punctuations, etc. Techniques to solve such issues have to be
integrated into the terminological matching module. Extensions could be inspired for example from
[Madhavan 01] where authors propose a normalization step that solves such problems. As part of
the normalization step, they perform tokenization (parsing names into tokens based on punctuation,

D.INF.01: Report on the design of extension mechanisms for creating templates, using templates for
editing and customizing the user interface, and of extensions to be integrated in the information

reuse tool (M3)

27

case, etc.), expansion (identifying abbreviations and acronyms) and elimination (discarding
prepositions, articles, etc.). In each of these steps they use a thesaurus that can have both common
language and domain-specific references. Other direction to be exploited is word soundex (an
encoding of names based on how they sound rather than how they are spelled) [Bell 01].

Moreover, exploiting synonyms and hypernyms relationships requires the use of thesauri or
dictionaries such as WordNet. In addition, terminological matching can also make use of domain-
or enterprise- specific dictionaries containing common names, synonyms, abbreviations, etc. These
specific dictionaries require a substantial effort to be built up in a consistent way. However, the
latter effort is well worth the investment, especially for schemas with a relatively flat structure
where dictionaries provide the most valuable matching hints [Rahm 01]. In this context we plan to
use CoP-independent ontologies making explicit CoP’s knowledge. Resources useful for CoPs
could be annotated semantically with respect to these ontologies. Such annotations could be used to
both understand the meaning of elements and make explicit semantic relationships between
elements within structured document. Such explicit knowledge could then be used in order to
improve the accuracy of terminological matching.

In constraint based matching, we limit ourselves to the analysis of datatype compatibility. However,
several constraints such as uniqueness and integrity constraints could give additional hints about
matching candidates. Techniques such as the ones described in [Miller 01] and [Li 00] could be
used. Moreover, our datatypes constraints analysis is limited to some facets. For example, we do not
consider patterns comparison. Research in regular expressions and pattern matching could be a
good candidate to extend our work.

Another direction of extensions concerns the kind of documents that we process. We can distinguish
between two types of documents with different requirements: document-centric and data-centric
documents. Data-centric documents are documents that use XML for data transport. Although XML
is human readable, data-centric documents are designed for machine consumption. Data-centric
documents are characterized by a fairly regular structure, fine-grained data, and mostly no mixed
content. The order in which elements occur is generally not significant. Document-centric
documents are documents that are designed for a human reader. They are characterized by a less
regular structure, coarse grained data, and lots of mixed contents. The order in which elements
occur is almost always significant, particularly when the document is read serially by a human
being.

The current tool essentially focuses on data-centric documents. We plan to extend it to deal with
document-centric documents. Issues like elements order and elements with mixed content will be of
major interest.

One of the remaining issues is the task of evaluating the performance of the reuse information tool.
We proposed an empirical evaluation of the current tool. We used a data set from real world
application (bibliographic data). For both direct and complex matches, our solution yields about
95% for both recall and precision. We further compared our work with Cupid and Similarity
Flooding algorithms and showed that it outperforms these algorithms [Boukottaya 04]. In the future,
we would like to evaluate our schema matching solution using a broad set of applications and data.
It will be also important to quantify the reduction in user involvement that a matching solution
achieves. Moreover, we plan to run further experimental studies to show the impact of our chosen
parameters on the matching process. Finally, the matching process is known to be a heavy and
costly process (especially in term of runtime) which is not acceptable for communities like CoPs.

Palette FP6-028038

28

Reduction of runtime will be very important. This could be done for example by allowing CoPs to
choose a set of matching criteria that are important for them which avoid to run the whole process.

4.3.2. Development of efficient user interface

Experience suggests that fully automated schema matching is infeasible, especially for complex
matches that involve transformation operations. Schema matching solutions must interact with the
user in order to arrive at correct final mappings. One of the most important open problems is then
efficient user interaction. Specific user input could be for example interactively requested at critical
points where it is maximally useful, not just at pre- and/or post-match. This makes post-match
editing much easier, since bad guesses made without user guidance need not be corrected and do not
propagate. Moreover, the great growing of web data sharing systems will further exacerbate
efficient user interaction problems. In fact, even if a near perfect matching solution exists, the user
still has to validate the huge number of mapping results produced. The key is then to discover how
to minimize user interactions but maximizing the impact of the feedback. A key challenge is to
design and implement a simple (an end-user not familiar with schema languages and XML
technologies should be able to use such interfaces) and efficient (points where the user interacts
with the tool should be clear) user interface. Moreover, a detailed documentation (easy to read and
understand) should be provided to end users.

4.3.3. Web services matching

Web services are defined as loosely coupled, reusable software components that refer to
programmatic interfaces used in the web for application-to-application communication. The
paradigm of web services has been changing the web from a repository of data into a repository of
services. This promises universal interoperability and integration since web services enable
platform independent and language neutral interaction on the web, as they rely on open XML-based
standards like SOAP and WSDL. A critical step in the process of reusing web services for building
web-based applications is the discovery of potentially relevant services. UDDI is an industry effort
to provide directory services for web services. It provides a standardized set of categories for
organizing web services. The current UDDI repositories only enable users to search services based
on keyword specifications. This method is clearly insufficient in the context of the PALETTE
project first because it requires a shared understanding of the application domain between the
service provider and the service consumer. Second, if users are not familiar with the pre-defined
service categories, they usually cannot retrieve the required services. Moreover, keywords do not
suffice for accurately specifying users’ information needs. How to conveniently, accurately and
efficiently discover required web services from expanding service repositories will be a critical
issue in our work.

We will essentially focus on proposing a set of complementary methods which can be used to
support a more automated web services reuse. The intuition underlying our future work is that a
plausible means of discovering web services to be reused is to provide a (potentially partial)
specification of the desired service (so-called virtual web service). Specification of virtual web
service includes various aspects, such as textual description, datatypes, and input/output parameters
of desired operations. We will propose a set of extensions to matching techniques used within the
current information reuse for computing similarities between two WSDL specifications. Similarity
computations serve for identifying potentially useful services and estimating their relevance to
consumer needs (specified in a virtual web service).

D.INF.01: Report on the design of extension mechanisms for creating templates, using templates for
editing and customizing the user interface, and of extensions to be integrated in the information

reuse tool (M3)

29

The first extension consists on adapting the current matching techniques by adding matching criteria
dealing with web services syntactic, structural and semantic specificity. The comparison of two web
services specification is a multi-step process involving the comparison of operation sets offered by
the services, which is based on the comparison of operations’ input and output messages, which, in
turn is based on the comparison of the data types of the objects communicated by these messages.
Data types are described using XML schema, thus the current matching techniques will be used at
this level. Once relevant services are located, users should be able to integrate with those services
automatically. For this, we also aim to extend our XSLT generator to deal with web services
transformations.

The second main extension deals with presentation issues: relevant web services should be
presented to the end-user in a manner that helps him to choose among several candidates. For this
purpose, we plan to derive a set of semantic links between web services in order to structurally
organize them into an overlay network (so-called web services repository). Web services will be
linked based on their semantic similarities. Compared with current approaches, the advantages of
the proposed approach include two aspects: (1) Convenience: Web service networks could be
represented visually which helps users to focus their intention and flexibly describe their retrieval
destination following semantic links. (2) Efficiency: Efficiency is obtained by limiting the search
space to relevant services (those having a semantic link).

5. Conclusion

Two complementary approaches to document models are presented in this report, as well as a
document reuse tool.

Both approaches to document models are intended to make authoring tools easier to use, while
producing high quality documents in standard, XML-based formats. Both aim at making
format-oriented tools more user friendly. The existing versions of the editing tools involved in this
task, Amaya and LimSee2, are format-oriented in the sense that the main goal in their design was to
implement document formats. Special attention was paid to the validity of the generated code and to
the availability of all features offered by the formats. To some extent, this was done to the detriment
of the user, as the original user interface was designed following closely the specification of the
document formats.

The user-oriented approach that is taken in this report aims at addressing this issue, without giving
up the format-oriented approach and its advantages. It consists in presenting the user with a
document model that is closer to him/her, which contains the elements he/she has in mind when
producing a document, not (only) the elements of the output format. The user interacts with the tool
in terms of these elements and does not bother with the details of the output format. The role of the
authoring tool is to transform actions performed by the user in terms of the authoring model into
actions on the output format.

This principle is applied to Amaya and LimSee in two different ways, because the kind of
documents they handle is very different. Amaya handles only discrete media, whose logical
structure has to be mapped only on the display space. LimSee handles continuous media and has to
cope with both the display and the synchronization of documents. It works on both space and time.
Adding the time dimension is a strong change, which requires an additional step for modelling
documents.

Palette FP6-028038

30

In Amaya the authoring model is expressed through a template language called XTiger. This
language allows authors to define structures that represent exactly the type of document they
manipulate. Simultaneously they specify how these structures are translated into the output format.

In LimSee3, things are more complicated. The output format, SMIL, handles two structures
simultaneously: the display structure described by regions, and the time structure, described by a
hierarchy of temporal operators. This leads to the introduction of an intermediate format, based on
semantically rich objects that can represent the logical structure of multimedia documents. Each
object includes both spatial and temporal dimensions of the elements it represents. Building on this
intermediate level of abstraction, a template model is used to define the various types of multimedia
documents authors may manipulate. This template model plays the same role as the template model
in Amaya, but it does not use the output format directly. It relies on the intermediate object model.

In this architecture document, the emphasis is put on the models and the languages to express the
models. Only some indications are given about the implementation and the user interface of the
editing tools. This will be done in the next step: the document models and languages will now be
implemented as an extension of Amaya and as a new version of LimSee.

While the authoring tools are intended to create and update documents, the information reuse tool
helps to use existing documents. It improves document usability by providing an automatic
transformation process. More precisely, it compares the schema of an existing XML document with
another schema describing the target structure of a transformation. As a result of this comparison
the structures of the source schema are mapped onto the structures of the target schema and an
XSLT transformation script is generated from the mapping. A prototype tool is available.

The last section of this report describes this prototype and its principle of operation, as well as the
extensions that are required to make it an operational tool. Three directions of extensions are
presented: robustness, user interface and web services. Robustness will be achieved by improving
the matching accuracy. Several extensions to mapping techniques are analyzed. Terminological
comparisons and constraint matching will be extended. The specific aspects of document-centric
structures will be considered and performance will be improved by a careful evaluation of matching
methods. The user interface work will focus on user input that may help the matching process to
make critical decisions and user contribution to the validation of the generated transformations.
Finally, extensions for web services will address matching techniques suited to the specific
transformations needed for discovering web services and techniques to help users to choose from
the available services.

6. References

[Altheim 01] M. Altheim, S. McCarron, XHTML 1.1 - Module-based XHTML, W3C
Recommendation, 31 May 2001, http://www.w3.org/TR/xhtml11/

[Boukottaya 04] A. Boukottaya, Schema matching for structured document transformations, PhD
thesis, EPFL, Oct. 2004

[Boukottaya 05] A. Boukottaya, C. Vanoirbeek, Schema matching for transforming structured
documents, Proc. 2005 ACM Symposium on Document Engieering, ACM Press, Nov. 2005, pp.
101-110

D.INF.01: Report on the design of extension mechanisms for creating templates, using templates for
editing and customizing the user interface, and of extensions to be integrated in the information

reuse tool (M3)

31

[Bell 01] G.S. Bell, A. Sethi, Matching records in a national medical patient index, CACM 44(9),
2001, pp. 83-88

[Bray 04a] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau, Extensible Markup
Language (XML) 1.0 (Third Edition), W3C Recommendation, 4 Feb. 2004,
http://www.w3.org/TR/REC-xml/

[Bray 04b] T. Bray, D. Hollander, A. Layman, R. Tobin, Namespaces in XML 1.1, W3C
Recommendation, 4 Feb. 2004, http://www.w3.org/TR/xml-names11/

[Bulterman 05] D. Bulterman et al. Synchronized Multimedia Integration Language (SMIL 2.1),
W3C Recommendation, 13 Dec. 2005, http://www.w3.org/TR/SMIL/

[Carlisle 03] D. Carlisle, P. Ion, R. Miner, N. Poppelier, Mathematical Markup Language
(MathML) Version 2.0 (Second Edition), W3C Recommendation, 21 Oct. 2003,
http://www.w3.org/TR/MathML/

[Clark 99] J. Clark, XSL Transformations (XSLT) Version 1.0, W3C Recommendation, 16 Nov.
1999, http://www.w3.org/TR/xslt

[Fallside 04] D. Fallside, P. Walmsley, XML Schema Part 0: Primer, Second Edition, W3C
Recommendation, 28 Oct. 2004, http://www.w3.org/TR/xmlschema-0/

[Ferraiolo 03] J. Ferraiolo, J. Fujisawa, D. Jackson, Scalable Vector Graphics (SVG) 1.1
Specification, W3C Recommendation, 14 Jan. 2003, http://www.w3.org/TR/SVG/

[Hirst 98] G. Hirst, D. St-Onge, Lexical chains as representations of context for the detection and
correction of malapropisms, in Christiane Fellbaum (editor), WordNet: An electronic lexical
database, Cambridge, MA, The MIT Press, 1998

[Khare 06] R. Khare, Microformats: the next (small) thing on the semantic web?, Internet
Computing, IEEE, vol. 10, issue 1, Jan.-Feb. 2006, pp. 68- 75

[Leinonen 03] P. Leinonen, Automating XML Document Structure Transformations. In Proc. ACM
Symposium on Document Engineering, ACM Press, 2003, pp. 26-28

[Li 00] W. Li, C. Clifton, SEMINT: A tool for identifying attribute correspondence in
heterogeneous databases using neural networks, Data and Knowledge Engineering, 33, 2000, pp.
49–84

[Lie 05] H. W. Lie, B. Bos, Cascading Style Sheets, Designing for the Web, 3rd edition, Addison
Wesley, 2005

[Madhavan 01] J. Madhavan, P.A. Bernstein, and E. Rahm. Generic schema matching with Cupid.
Proc. International Conference on Very Large Databases (VLDB), 2001

[Melnik 02] S. Melnik, H. Garcia-Molina, E. Rahm. Similarity Flooding: A versatile Graph
Matching Algorithm and its Application to Schema Matching, Proc. 18th International
Conference on Data Engineering, 2002

Palette FP6-028038

32

[Miller 01] R. Miller, The Clio Project: managing heterogeneity, ACM SIGMOD Record 30(1),
2001, pp. 78-83

[Quint 04] V. Quint, I. Vatton, Techniques for Authoring Complex XML Documents, Proc. 2004
ACM Symposium on Document Engineering, Oct. 2004, pp. 115-123

[Quint 05] V. Quint, I. Vatton, Towards Active Web Clients, Proc. 2005 ACM Symposium on
Document Engieering, ACM Press, Nov. 2005, pp. 168-176

[Rahm 01] E. Rahm, P.A. Bernstein, On matching schema automatically, Microsoft Research
Publications, 2001, http://www.research.microsoft.com/pubs

[Su 01] H. Su, H. Kuno, E.A. Rundensteiner, Automating the transformation of XML Documents,
Proc. ACM Symposium on Document Engineering, 2001

D.INF.01: Report on the design of extension mechanisms for creating templates, using templates for
editing and customizing the user interface, and of extensions to be integrated in the information

reuse tool (M3)

33

	D.INF.01: Report on the design of extension mechanisms for creating templates, using templates for editing and customizing the user interface, and of extensions to be integrated in the information reuse tool (M3)
	Summary
	Contents
	1. Introduction
	2. Templates in Amaya
	2.1. Amaya
	2.2. Templates and Semantic XHTML
	2.3. The XTiger language
	2.3.1. Types
	2.3.2. Structure description
	2.3.3. Content and attributes
	2.3.4. Other features

	2.4. Implementation issues
	2.4.1. Structure manipulation
	2.4.2. User interface issues

	3. Authoring model for LimSee3
	3.1. From LimSee2 to LimSee3
	3.2. Document model
	3.2.1. Object approach
	3.2.2. Objects hierarchy
	3.2.2.1. Media assets and media objects
	3.2.2.2. Rich objects

	3.2.3. Object-to-object relations
	3.2.4. Comments on the document model

	3.3. The templates model
	3.3.1. Template documents and template objects
	3.3.2. Media zones
	3.3.3. Repeatable structures
	3.3.4. Instantiation of a template

	3.4. Issues and future extensions
	3.4.1. Locked parts
	3.4.2. Heterogeneous lists
	3.4.3. Object types
	3.4.4. High level concepts and syntax choices

	4. Document reuse tool
	4.1. Automating structured document transformations
	4.1.1. Related work
	4.1.2. Shortcomings and requirements

	4.2. Current state of the information reuse tool
	4.2.1. The conceptualization toolkit
	4.2.1.1. The schema graph generator
	4.2.1.2. The schema graph visualizer

	4.2.2. The matcher engine
	4.2.2.1. Terminological matching
	4.2.2.2. Datatype compatibility
	4.2.2.3. Designer type hierarchy
	4.2.2.4. Structural matching
	4.2.2.5. Mapping discovery
	4.2.2.6. Mapping structuring

	4.2.3. XSLT generator

	4.3. Extensions to the information reuse tool
	4.3.1. Robustness issues
	4.3.2. Development of efficient user interface
	4.3.3. Web services matching

	5. Conclusion
	6. References

